

ļ		

FINAL MARK

GIRRAWEEN HIGH SCHOOL MATHEMATICS YEAR 11 HSC TASK 1 2009 ANSWERS COVER SHEET

Name:		
T ASSTITATE.		

QUESTION	MARK	H2	Н3	H4	Н5	Н6	Н7	Н8	Н9
Q 1	/12		<u></u>	1	✓				
Q2	/14			✓	✓				_
Q3	/14			✓	✓				
Q 4	/17	✓		1	√			V. V	7
Q5	/24				✓				
Q6	/22				√				n: 24.652.222386
07	/10				₩				
Q7	/18								
TOTAL	/121	/17		/57	/121				/121

HSC Outcomes

H9

Mathematics

constructs arguments to prove and justify results. H2 manipulates algebraic expressions involving logarithmic and exponential H3 functions. expresses practical problems in mathematical terms based on simple given H4 models. applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and H5 series to solve problems. uses the derivative to determine the features of the graph of a function. H6 uses the features of a graph to deduce information about the derivative. H7 uses techniques of integration to calculate areas and volumes. H8

communicates using mathematical language, notation, diagrams and graphs.

GIRRAWEEN HIGH SHOOL **MATHEMATICS**

HSC Task 1, 2009 YEAR 11 90 minutes Time Allowed: **Instructions:** Attempt all questions. Start each question on a new page. All necessary working must be shown. Marks may be deducted for careless or badly arranged work. **Question 1 (12 marks)** a) A child's printing set contains five lots of each of the letters of the alphabet. What is the probability of reaching into a box containing all the letters and choosing: 1 the letter W? i) 1 ii) a vowel? 2 a consonant? iii) b) In a game, tiles in a bag are marked 1, 2 or 3. There are equal quantities of each. A tile is removed, noted and replaced. Construct a Probability Tree diagram showing the outcomes for two i) 3 successive draws. Calculate the probability of drawing: ii) 1 two 3's a) 2 β) no 3's 2 at least one three γ) Question 2 (14 marks) a) Find the locus of the point P(x, y) that moves so that: 3 it is equidistant from the points A(-1, 6) and B(3, 2). i) its distance from A(2, 4) is always twice its distance from B(3, -2). 4 ii) its distance from the y-axis is equal to its distance from the point (2, 3). 5 iii) 2

it is 3 units from the point (3, 6).

iv)

Question 3 (14 marks)

- a) Find the focus and directrix of:
 - i) $x^2 = 2y$
 - ii) $y^2 = -4x$ 3
- b) Find the equation of the parabola with its focus at (1, 4) and directrix at y = 8.
- c) A parabola has its vertex at the point (3, 1) and focus at the point (3, 3).
 - i) What is the focal length?
 - ii) What is the equation of the directrix?
 - iii) What is the equation of the parabola?

Question 4 (17 marks)

- a) Sketch the graph $y^2 = x$ marking its focus and directrix.
- b) Find the radius and coordinates for the centre of the circle $x^2 + y^2 4x 10y + 20 = 0.$
- c) Find the equations of the *tangent* and *normal* to the parabola $x^2 = -8y$ at point (4,-2).
- d) Points P(8,8) and $Q\left(-2,\frac{1}{2}\right)$ are on the parabola $x^2 = 8y$. Show that PQ is a focal chord.

Question 5 (30 marks)

a) For the series 5+12+19+26+, findi) the common difference.			1			
	ii)	the 24 th term.	2			
	iii)	the sum of the first 24 terms.	2			
b)	If the s	seventh term of an arithmetic sequence is 20 and the thirteenth term is 38, the first term and the common difference.	4			
c)		ne number of terms in an arithmetic sequence with $a=5$, $d=2$ and the arm 43.	2			
d)	For th	e series 12+6+3+, find the common ratio.	1			
	ii)	the 6 th term.	2			
	iii)	the sum of the first 6 terms.	2			
e)	The th	aird term of a geometric sequence is 8, the sixth term is -1, find the common ratio.	4			
	ii)	the first term.	2			
	iii)	the eighth term.	2			
Quest	tion 6 (22 marks)				
a)) Find	whether 2863 is a term of the sequence 5,8,11,	3			
		numbers 2, a , b are in arithmetic progression and a , b , 9 are in geometric ion. Find a and b .	6			
c)	c) Express 0.57 as a fraction, using a geometric series.					
d)		the common ratio of a geometric series with a first term of 125 and a ng sum of 100.	3			
e) If the sequence 4, -2.5, is geometric, find:						
	i)	an expression for the <i>n</i> th term.	2			
	ii)	an expression for the sum of n terms and find its value when $n=5$.	3			
	iii)	the limit of S_n as $n \to \infty$.	2			

Question 7 (18 marks)

a) Evaluate:

i)
$$\sum_{n=1}^{5} (-5)^{n-1}$$
 2 ii) $\sum_{n=10}^{20} (15-n)$ 2

- b) In a class of 24 students 3 play no sport, 14 play cricket and 12 play tennis. If a student is chosen at random;
 - i) Draw a venn diagram to represent the data.
 - ii) What is the probability that he or she plays tennis only?
 - iii) What is the probability that he or she plays both tennis and cricket?
 - iv) If two students are chosen at random, which is more likely:
 They both play cricket only or they both play tennis only.

 3
- c) Cans of fruit in a supermarket display are stacked so that there are 4 cans in the top row, 6 in the next row, 8 in the next and so on. If there are 10 rows in the display, find:
 - i) the number of cans in the bottom row.
 - ii) the total number of cans in the display.
- d) The lengths of the rungs of a ladder increase uniformly from 40cm in the top rung to 75cm in the bottom rung. If 13.8m of wood are used to make the rungs, how many rungs are there?

٠			1	
	411 HSC Tank 1 (``.		-director-
<i>(</i>	Question 1. Question 2	1	OR.	\sqrt{s} ci) $\sqrt{(3,1)}$ s(3,3) $\frac{1}{3}$ s $\sqrt{23}$
<u> </u>	(i) $P(W) = \frac{1}{2}$ (i) $A(-1,6)$ $B(3,2)$ $P(\alpha, y)$		$(y-k)^2 = 4\alpha(x-h)$	(2,3) $a=2$
	26.			
	11) P(Vowel) = 5 (1) PA = PB.		$(y-3)^2 = 4(1)(x-1)$	i z z ii) directrix
	26 PA2 = PB2.		$(y-3)^2 = 4(x-1)$.	4=-1 (2)
	(ii) $P(consonent) = 1 - P(vowel) (x+1)^2 + (y-6)^2 = (x-3)^2 + (y-2)^2$			y=1
·	= 21 202+2x+1+42-124+36=202-60c+9+47-44+4		iv) Point (3,6). P((x,y) . (iii) $(x-3)^2 = 4(2)(y-1)$.
	26. (2) 8x-8y+24=0.		PA = 3.	$(x-3)^2 = 8(y-1)$ (2)
	$\therefore x - y + 3 = 0.$	·····	PA 2= 9.	(2)
-(3)	bi) 1st 2nd Outcome P.		$(2-3)^2+(4-6)^2=9$	
	$\frac{1}{3}$ 1 $\frac{1}{4}$ $\frac{1}{11}$ $\frac{1}{11}$ $\frac{1}{4}$ $\frac{1}{11}$ $\frac{1}{$			(a) $y^2 = x$.
	$\frac{1}{3} \frac{1}{2} \frac{12}{12} \frac{9}{9} \frac{9a^2}{9a^2} \frac{4x9a^2}{12}$		Question 3.	$4a = 1 \qquad x = 4 \qquad -7$
			(a) $x^2 = 2y$	1 a= 4
			$\Sigma^2 = 4ay$.	$S(\frac{1}{4},0)$
	Start $\frac{1}{3}$ 2 22 $\frac{1}{2}$ 1			
	G = 100 10		$a = \frac{1}{2}$ $S(0, \frac{1}{2})$	$\frac{1}{y} = \frac{1}{2} \cdot \frac{\text{directrix}}{\text{directrix}} \times 2 = \frac{1}{4} $
-	$\frac{3}{3} \frac{3}{3} \frac{23}{4} \frac{1}{3} \frac{3x^2 - 20x + 3y^2 + 24y + 32 = 0}{3} \frac{41}{3}$			
	32 d (11) point (2,3) y-axis P(2,4)	<u></u>	directrix: y= -1	()
	$\frac{1}{3}$ $\frac{3}{33}$ $\frac{9}{4}$ $A(2,3)$ $B(0,4)$. $P(x,y)$	<u></u>	11) 42= -40c.	$\frac{14}{(x-2)^2 + (y-5)^2} = 9.$
	9 PA = PB		y2= - dax (-1,0)1	(X-2) 79-5) - 1
	a) P(two 3's) = 1 x 1 PA== PB2.		4a = 4.	: centre of the circle is (2,5)
	$(x-2)^{2}(y-3)^{2} = (x-0)^{2}(y-y)^{2}$		9=1.	xil and the radius = 3.
	= \frac{1}{7} \frac{1}{362-4x+4+42-64+9= x2}		S(-1.0)	
<u></u>	112 Au - 152 - 5			$C) x^2 = -84 (4, -2)$
	B) P(no 3's) = + + + + + + + + + + + + + + + + + +		← ¹	$\frac{(C) \cdot x^{2} = -8y}{-y = 8} \cdot \frac{(4, -2)}{8}$
	$(4-3)^2 = 4x - 4$ (5)		5)	}
	$= \frac{4}{9} \qquad (2) \qquad (4-3)^2 = 4(x-1).$		$(x-1)^2=4(2)(y-6)$	y' = -25c = -2
	Y) P(at least one 3)		$(x-1)^2=8(y-6)$.	se luhen oc=4
	= 1 - P(no3's)		(5)	y'= -4 = 1.
	$= 1 - \frac{4}{5} = \frac{5}{2}$		(3)	· 1
	$=1-\frac{4}{9}=\frac{5}{9}$ (2)			$M_{langest} = -1$ $M_{normal} = 1$
1			ł.	-

		. ()	•		
,	Egn : 4+2 = 1(x-4).	Culestons.		c) a=5, ol=2, L=43.	(11) $8 = a(-1)^2$
<u> </u>	y + 2 = 2x - 4. y = x - 6 or	(ai) 12-5 = 7. (i)		$T_{n} = 43$	8 = a
	$y = x - 6 \cdot oz$	d=7.		43 = 5 + (n-1) 2.	4. (2)
	x-4-6=0.	ii) a=5 d=7.		43 = 5 + 2n - 2.	_'. Q = 32.
		$\int_{-74}^{7} = 5 + (24-1)7.$		40 = 2n.	
	Eq. : 4+2=-1(2c-4).	= 5 + 23(7). (2)	<u> </u>	i. n = 20.	(ii) T ₈ = 32 (-2)"
	Eq. $y + 2 = -1(x - 4)$. y + 2 = -x + 4. y = 2 - x OR.	= 166.			= 32 x - 1 128
	4 = 2 - >C OR.	(ii) $S_n = \frac{n}{2} \left[2\alpha + (n-1) d \right]$		oli) r= 6 = 1.	128
	DC+4-2=0.	25.		12 2	= +
	5 6	$S_{24} = \frac{24}{2} \left[10 + 23(7) \right]$			7.
	ol) xc2 = 8y. . 4a = 8			ii) $T_n = ar^{n-1}$ $a=12 r = \frac{1}{2}$ $T_b = 12 \left(\frac{1}{2}\right)^5$	Question 6
	. da=8	= 12 (10+161) (2)		$T_b = 12(\frac{1}{2})^5$	a) a=5 ol=3.
	· a = 2.	= 2052.	<u></u>		2863 = 5 + (n-1)3
	1. S(0,2)			$=\frac{3}{6}$ (2)	2863 = 5+3n -3
		b) T ₇ = 20 T ₁₃ = 38			2861 = 3n (3)
	$m_{p_q} = \frac{1}{2} - 8$	20=a+6d 38=a+12d.		(ii) $S_n = \alpha(1-r^n)$	11 = 733,007
	$m_{p_3} = \frac{1}{2} - 8$ $-2 - 8$ $= -7\frac{1}{2}$	Solve simultaneously.		1-1.	: 2863 is not a term in this
· · · · · · · · · · · · · · · · · · ·	= -/2	20=a+6d		$S_b = 12\left(1 - \left(\frac{1}{2}\right)^b\right)$	sequence.
	lc.	38 = a +1201		+ (2)	
	= 15 = 3	18 = 6d.	_	2	b) AP CIP.
		ol = 3.		= 189 = 23 \frac{5}{8}	a-2=b-a $b=9$
	Eqpq: $4-8 = \frac{3}{4}(x-8)$. 4y-32 = 3x-24. 3x-4y+8=0.	Sub d=3 into. (4)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	b=2a-2. a b.
·····	4y-32 = 3x-24	20 = a+6d.			;
	3x - 4y + 8 = 0	20 = 9+ 18.		e) $T_3 = 8$ $T_5 = -1$ i) $8 = \alpha r^2 - 1 = \alpha r^5$	- 20-2 - 9
				i) $8 = \alpha r^2 - 1 = \alpha r^5$	a 20-2
	When S(0,2)	: First term is 2 common diff 3.		Solving simultaneously1 = ar5	
	3(0)-4(2)+8=0. (5)			$-1 = ar^5$	$\frac{(2a-2)^2 = 9a}{4a^2 - 8a + 4 = 9a}$
				8 = ac2.	492-80+4 = 9a
	0 = 0				$4a^2 - 17a + 4 = 0$
	. The chord Pa panes		·	$-\frac{1}{6}=$ $\frac{1}{6}$	102-16a-a+4=0
	through the focus so	i		<u>(+)</u>	4a(a-4)-(a-4)=0
	1+ 15 G focal chord.			:, r = - ½	(4a-1/a-4)=0
	r				(4a-1xa-4)=0 a=+, ad a=4
	,				· eneq

") .		Ć.	1		
	Sub a = 4 11 = 4.	e) i) a=4 r= -0.625		5))	(c)i) a= 4 d=2 n=10
	b=2(4)-2. b=2(4)-2.	$T_n = 4(-0.625)^{n-1}$ (2)		(2	$T_{10} = 4 + (10 - 1)(2).$
	b=-12 b= b.	$(i) S_n = 4(1-(-0.625)^n)$	 	9 5 7	= 4 + 9(2) $= 22$
	1. 9= 4 or 0=4	1+0.625			
	6:-3 6:6	1 1/		3	: There are 22 cars in the
	(b)	$=4-4(-0.625)^{2}$	1	(i) 0(= 1,1) 7 C	bottom row.
,	0,57 = 0,57 + 0,0057 +0,000057		<u>-</u>	11) $P(Tennis only) = 7$ (1) 24.	$ i S_{10} = v 2(4) + (10-1)(2)$
	<i>q</i> = 0.57	When n=5.			400
	r= 0.01.	$S_5 = 4 - 4(-0.625)^5$.		iii) P (BOH TERMS and Cricker) = 5	= 5(8+18) = 5×26 (2)
	So = 0.57	= 2.7 (2dp).		24.	= 130
	1-0.01				
		11i) Soo = 4		iv) P(Cricket only) = 9 , 8	: There are 130 cans in
	= 0·57 = 57 0·99 99	1+0.625 (2)			the display
	0.14	= 2.46 (2dp).		= 72.	1 0 10 1 7
	= 19 (3)	- 2 70 (20p).		<u>\$52.</u>	d) a = 40 L = 75
	33.	Question 7.		P(BOH TERMS Only)= Z x 6	Sn = 1380
	مال م يعجد د	a)i) 5		24 23	
	ol) $a = 125$ $S_0 = 100$.	$\sum_{n=1}^{\infty} (-5)^{n-1} = 1 - 5 + 25 - 125 + 625$		= 42	$1380 = \frac{0}{2} (40 + 75).$
	100 = 125	n=1 = 521.		**************************************	2760 = 1/50.
	1-0			. (3)	
	100(1-1) = 125	ii) 20 5 (15-n)		-: It is more akely they	h = 2760
	100 - 100 = 125 (3)	0=10		both play cricket only	115.
-	-100r = 25.	= 5+4+3+2+1+0-1-2-3-4-5			n = 24
	r=	= 0.			
	4.		-		There are 24 rungs on the
	: Common raho = -				ladder.